Közel 30%-ot ugrott már 2023 elején a Bitcoin ára, átbeszéltjük, hogy szerintünk ez bull trap-e...

A blokkláncok titkosítása veszélyben lehet a kvantumszámítógépek megjelenésével, hiszen ezen technológia egyik alkalmazási területe a matematikai kriptográfia feltörése. Ugyan a technológia még új és kiforratlan, de a jövőben sok, eddig feltörhetetlennek hitt titkosítás kerülhet veszélybe.
A számítástechnika a XX. század második felében egyre nagyobb teret nyert. A fizikusok és feltalálók keresték az alkalmazási lehetőségeket és folyamatosan fejlesztették gépeiket. A mai számítógép alapjait Neumann János, magyar származású matematikus fektette le és publikálta 1946-ban. A kvantumszámítógép eredete 1980-ra tehető, amikor Paul Benioff azt javasolta, hogy a számításokra kvantummechanikát alkalmazzunk. Az ötlet kijelentése után több kutatóintézet és egyetem (többek között az Oxford is) nekiállt kidolgozni az elméleti hátteret.
2007-ben egy D-wave nevezetű startup vállalat kijelentette, hogy a kvantumszámítógépük képes megoldani egy Sodoku-t. A technológia tesztelésébe beszálltak a nagy vállalatok, a D-wave hardware-ét 2013-ban teszteli a Google és a NASA is. Majd nem is olyan rég, 2019-ben a Google kijelentette, hogy elérte a kvantumfölényt. Ez azt jelenti, hogy túlszárnyalták az általános számítógépek tudását. E szerint a kvantumszámítógép már képes megoldani olyan problémát, amit egy számítógép nem tud. Ebben az esetben a “nem tud” annyit jelentett a Google értelmezése szerint, hogy túlságosan sok időbe kerülne, tegyük fel 10 ezer évbe.
Forrás: spectrum.ieee.org
Miben különbözik a hagyományos számítógép a kvantumszámítógéptől? Nos, nem vagyok fizikus, ezért nem mennék bele a részletekbe (nem is tudnék), de alapelveit az interneten gyorsan felkutathatjuk. A hagyományos számítógépek kettes számrendszert használnak, minden számítás nullákból és egyesekből áll. Ezzel szemben a kvantumszámítógép kvantumbiteket használ, amik értéke 0, 1 vagy ezek bármilyen, úgynevezett kvantum-szuperpozíciója lehet, ami végtelen sok lehetőséget tartalmaz. Ezen kívül a kvantumszámítógép a számításokat egymással párhuzamosan hajtja végre.
A Bitcoin tárcák létrehozásához a publikus kulcs titkosítást használja a rendszer. A privát kulcs a “jelszó” a tárcához, míg a publikus kulcson keresztül utalhatnak nekünk Bitcoint, azt nyugodtan megoszthatjuk a nagyvilággal. A titkosítás alapja egy olyan matematikai függvény, ami az egyik irányba könnyen kalkulálható (privát kulcsból könnyen generálható a publikus kulcs), másikba nagyon nehezen (publikus kulcsból nehezen tudjuk megmondani a privát kulcsot). Mindaddig, ameddig a privát kulcs nem kerül más kezébe, a tulaj biztonságban tudhatja a kriptovalutáit. Ezt azért merjük kijelenteni, mert a publikus kulcsból túlságosan sok idő visszafejteni a privát kulcsot (több emberöltő alatt). Legalábbis mindez igaz, ha a hagyományos számítógépek kapacitásával számolunk. 1994-ben egy matematikus – Peter Shor – publikált egy tanulmányt, amiben azt a kérdést fejtegette, hogyan tud feltörni egy kvantumszámítógép egy titkosítást.
Megjelenése óta voltak ráncfelvarrásai a Bitcoin rendszernek. Kezdetekben a publikus kulcs megfelelt a tárca címének, ezt logikusan “pay to public key”-nek hívják, röviden p2pk. A Bitcoin megjelenése után megannyian bányásztak és kapták fizetségüket p2pk címekre, és máig azon tárolják. Az ilyen típusú címmel több probléma is van. Nagyon sok karakterből áll, így könnyen félreüthetjük, valamint a blokkláncon sok helyet foglal, így a feldolgozása is hosszú időbe kerül. Nem beszélve a kvantumszámítógépről, ami Peter Shor algoritmusával visszafejti a publikus kulcsot, hogy megkapja a privát kulcsot.
Forrás: learnmeabitcoin.com
Manapság a címeket úgy hozzák létre, hogy hashelik a publikus kulcsot. Ezzel egy rövidebb karaktersorozatot kapunk egy olyan egyirányú függvény segítségével, ami nagyon apró eséllyel generál két különböző karaktersorozatot ugyanarra a hash értékre. Ez esetben nem a publikus kulcsot osztjuk meg a nagyvilággal, hanem a hashelt változatát. Ennek a neve “pay to public key hash”, röviden p2pkh, amit 2010-ben vezettek be a hálózaton. Ez megannyi problémáját megoldja a p2pk rendszernek, hiszen a publikus kulcs is rejtve marad mindenki elől mindaddig, amíg a tulajdonos nem indít tranzakciót a tárcáról. Ugyanis ilyenkor megjelenik a publikus kulcs a blokkláncon. Így azok a p2pkh címek, amik nem indítottak még tranzakciót, védve vannak a kvantumszámítógépektől.
Ugyan jelenleg még senkinek nincs a kezében egy olyan kvantumszámítógép, amivel feltörhetné az összes sebezhető Bitcoin tárcát, de valószínű, hogy belátható időn belül a nagyobb vállalatoknak lehet. Abban az esetben, ha valaki rendelkezne ilyen gépezettel, a tárcák egy része biztosan feltörhető lenne. Ezek a p2pk, illetve a már “használt” (indítottak róla tranzakciót) p2pkh alapú címek. A Deloitte-nak köszönhetően grafikonon ábrázolhatjuk a sebezhető Bitcoinok számát.
A megoldás egy potenciális jövőbeli veszélyre, ha olyan címen tároljuk a Bitcoinunkat, ami p2pkh alapú, valamint még nem küldtünk tranzakciót róla. A HD pénztárcák egy mesterkulcsból generálnak több privát kulcsot, így több címünk is lehet, ami növelheti a biztonságunkat.
Egy scenárióról még nem beszéltünk. Egy tranzakciót megközelítőleg 10 perc alatt dolgoz fel a hálózat. Ha egy olyan címről indítottuk a tranzakciót, ami p2pkh alapú, valamint még nem használt, akkor is a tranzakció indításakor a publikus kulcsunk felkerül a blokkláncra. Ha képes lenne egy kvantumszámítógép 10 percen belül feltörni egy publikus kulcsot, valamint elindítani egy új tranzakciót, amit saját maga kibányászik, akkor nincs menekvés, bármilyen tárca feltörhető lenne.
Ne felejtsük el, hogy a Satoshi Nakamoto által 12 éve lefektetett alapoktól már azért jóval fejlettebb a Bitcoin hálózata, mint akkor volt. Gondoljunk csak a SegWit-re, Lightning Networkre. Vagyis látható, hogy ugyan szépen lassan, de a Bitcoin hálózatát is folyamatosan fejlesztik, ha pedig meg van a konszenzus a felhasználók részéről, akkor képes a Bitcoin programkódja is folyamatosan fejlődni. A kvantumszámítógépek potenciális térhódítása pedig egy olyan téma, amivel a legtöbb fejlesztő tisztában van. Így nagyon simán elképzelhető, hogy amikorra valóban “bevethető” kvantumszámítógépek lesznek, addigra a Bitcoin tovább fejlesztett hálózata simán hárítani fogja már ezt a problémát.
Korábban már írtunk a jelenségről, miszerint a fejlesztőknek észben kell tartaniuk a hosszútávú célokat, ugyanis ha nem fejlesztik a blokklánc titkosítási rendszerét, akkor a kvantumszámítógépek fenyegetni fogják a hálózat biztonságát a jövőben. Azok, akik fórumon is szeretnék megvitatni a kérdést másokkal, itt és itt megtehetik.
Felmerül a kérdés, hogy azok a veterán bányászok, akik elvesztették a privát kulcsukat egy p2pk alapú címhez, a jövőben visszaszerezhetik-e elveszettnek hitt Bitcoinjaikat. Ha egy nagyobb vállalat, mint a Google rendelkezne az erőforrásokkal, valamint hajlandó lenne segíteni ezeken a bányászokon, akkor megmenthető lenne sok ezer Bitcoin. A bányászoknak persze valahogyan bizonyítania kellene, hogy valóban őket illeti meg az adott tárca, de ez már egy másik probléma.
Addig is, aki a legnagyobb biztonságban szeretné tudni a pénzét, használjon p2pkh alapú címeket, ne küldjön róla tranzakciót, és legyen a tárca teljesen offline (“cold storage“).
A kifejezetten a kvantumszámítógépek ellenállására kifejlesztett képességek fejlesztése és megvalósítása kulcsfontosságú lesz a blokkláncok jövője és a túlélésük szempontjából. A Blockchain támogatóinak és fejlesztőinek ezért szorosan figyelemmel kell kísérniük a szabványosítási folyamatokat. Ez mellett fel kell készülniük az eredmények integrálására a meglévő és a jövőbeli blockchain projektekbe.
Nem kérdés, hogy jönni fognak a kvantumszámítógépek és az se, hogy nagy hatásuk lesz a jelenlegi technológiai világra. Ahogyan a többi technológiai ágazatnak, a blokkláncnak is fel kell készülnie erre!
De azok, akik úgy vélik, hogy annak egyszerű létezése a blokklánc halálát képezi, nem veszik figyelembe, hogy a blokklánc is növekszik és fejlődik a kvantumszámítás mellett. Rengeteget lehet tenni annak érdekében, hogy a blokkláncok dinamikusabbak és robusztusabbak legyenek. Ha ezeket megtesszük, akkor pedig nekünk semmi esetre sem kell aggódnunk a kvantum-fölény miatt.
Borítókép forrása: umbrellarconnect.com
Ha tetszik, amit csinálunk és szeretnéd biztosítani, hogy a Cryptofalka továbbra is a megszokott minőségi tartalmakat tudja nyújtani az olvasók számára, a következő linken tudod támogatni a munkánkat. Köszönjük! 👋
Donation: ➡️ LINK ⬅️
Oldalunk ellenőrzött Brave alkotó, így ha Brave böngészőt használsz BAT segítségével is tudod támogatni a munkánkat.
—————————————————————————————————————————————————–
A CryptoFalka által szolgáltatott információk és elemzések a szerzők magánvéleményét tükrözik, a megjelenő írások nem valósítanak meg a 2007. évi CXXXVIII. törvény (Bszt.) 4. § (2). bek 8. pontja szerinti befektetési elemzést és a 9. pont szerinti befektetési tanácsadást. Bármely befektetési döntés meghozatala során az adott befektetés megfelelőségét csak az adott befektető személyére szabott vizsgálattal lehet megállapítani, melyre a CryptoFalka nem vállalkozik. Az egyes befektetési döntések előtt éppen ezért tájékozódjon részletesen és több forrásból, szükség esetén konzultáljon személyes befektetési tanácsadóval!